2023-24 MATH2048: Honours Linear Algebra II Homework 10

Due: 2023-12-04 (Monday) 23:59

For the following homework questions, please give reasons in your solutions. Scan your solutions and submit it via the Blackboard system before due date.

1. Let W be a finite-dimensional subspace of an inner product space V. Show that if T is the orthogonal projection of V on W, then $I-T$ is the orthogonal projection of V on W^{\perp}.
2. Let T be a linear operator on a finite-dimensional inner product space V.
(a) If T is an orthogonal projection, prove that $\|T(x)\|^{2} \leq\|x\|^{2}$ for all $x \in V$. Give an example of a projection for which this inequality does not hold. What can be concluded about a projection for which the inequality is actually an equality for all $x \in V$?
(b) Suppose that T is a projection such that $\|T(x)\|^{2} \leq\|x\|^{2}$ for $x \in V$. Prove that T is an orthogonal projection.
3. (a) Let A and B be commuting square matrices, i.e., $A B=B A$. Show that the binomial formula can be applied to $(A+B)^{n}$, i.e.,

$$
(A+B)^{n}=\sum_{k=0}^{n}\binom{n}{k} A^{n-k} B^{k}
$$

where $\binom{n}{k}$ is the binomial coefficient.
(b) Let A the Jordan block

$$
A=\left(\begin{array}{lll}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right)
$$

Find A^{4}. (Hint: Use part (a).)
4. Let V be the real vector space of functions spanned by the set of real valued functions $\left\{1, t, t^{2}, e^{t}, t e^{t}\right\}$, and T the linear operator on V defined by $T(f)=f^{\prime}$.

Find a basis for each generalized eigenspace of T consisting of a union of disjoint cycles of generalized eigenvectors. Then find a Jordan canonical form J of T.
5. Let $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{p}$ be cycles of generalized eigenvectors of a linear operator T corresponding to an eigenvalue λ. Prove that if the initial eigenvectors are distinct, then the cycles are disjoint.

The following are extra recommended exercises not included in homework.

1. Let T be a normal operator on a finite-dimensional complex inner product space V. Use the spectral decomposition $\lambda_{1} T_{1}+\lambda_{2} T_{2}+\ldots+\lambda_{k} T_{k}$ of T to prove the following results.
(a) If g is a polynomial, then $g(T)=\sum_{i=1}^{k} g\left(\lambda_{i}\right) T_{i}$.
(b) if $T^{n}=T_{0}$ for some positive integer n, then $T=T_{0}$.
(c) Let U be a linear operator on V. Then U commutes with T if and only if U commutes with each T_{i}.
(d) There exists a normal operator U on V such that $U^{2}=T$.
(e) T is invertible if and only if $\lambda_{i} \neq 0$ for $1 \leq i \leq k$.
(f) T is a projection if and only if every eigenvalue of T is 1 or 0 .
(g) $T=-T^{*}$ if and only if every λ_{i} is an imaginary number.
2. Let T be a normal operator on a finite-dimensional inner product space. Prove that if T is a projection, then T is also an orthogonal projection.
3. Let

$$
A=\left(\begin{array}{cccc}
2 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 3 & 0 \\
0 & 1 & -1 & 3
\end{array}\right)
$$

Find a basis for each generalized eigenspace of L_{A} consisting of a union of disjoint cycles of generalized eigenvectors. Then find a Jordan canonical form J of A.
4. Let T be a linear operator on a vector space V , and let γ be a cycle of generalized eigenvectors that corresponds to the eigenvalue λ. Prove that $\operatorname{span}(\gamma)$ is a T-invariant subspace of V.
5. Let T be a linear operator on a finite-dimensional vector space whose characteristic polynomial splits, and let λ be an eigenvalue of T.
(a) Suppose that γ is a basis for K_{λ} consisting of the union of q disjoint cycles of generalized eigenvectors. Prove that $q \leq \operatorname{dim}\left(E_{\lambda}\right)$.
(b) Let β be a Jordan canonical basis for T, and suppose that $J=[T]_{\beta}$ has q Jordan blocks with λ in the diagonal positions. Prove that $q \leq \operatorname{dim}\left(E_{\lambda}\right)$.

